

International Journal of Orthopaedics Sciences

E-ISSN: 2395-1958 P-ISSN: 2706-6630 IJOS 2025; 11(3): 212-215 © 2025 IJOS

www.orthopaper.com Received: 23-05-2025 Accepted: 25-06-2025

Omar Kassim Salman

Associate Professor, Department of Orthopaedics, H.O.D, Navy Hospital Kalyani, Visakhapatnam, Andhra Pradesh, India

Omar Kassim Salman

Department of Orthopedics, Abu-Graib General Hospital, Baghdad Alkarkh Health Directorate, Ministry of Health, Baghdad, Iraq

Zaid Ismael Khaleel

Department of Orthopedics, Abu-Graib General Hospital, Baghdad Alkarkh Health Directorate, Ministry of Health, Baghdad, Iraq

Hayder Amer Khazaal

Department of Orthopedics, Abu-Graib General Hospital, Baghdad Alkarkh Health Directorate, Ministry of Health, Baghdad, Iraq

Corresponding Author: Omar Kassim Salman Department of Orthopedics, Abu-Graib General Hospital, Baghdad Alkarkh Health Directorate, Ministry of Health, Baghdad, Iraq

Superiority of dynamic hip screw fixation over proximal femoral locking plate in treating stable intertrochanteric fractures

Omar Kassim Salman, Zaid Ismael Khaleel and Hayder Amer Khazaal

DOI: https://www.doi.org/10.22271/ortho.2025.v11.i3c.3807

Abstract

Background: Intertrochanteric fractures in the elderly pose a significant clinical challenge, frequently resulting in extended disability and increased mortality rates. Determining the most effective fixation method to promote early mobilization and minimize complications is therefore a critical concern. This study aims to determine the superiority of the Dynamic Hip Screw (DHS) over the Proximal Femoral Locking Plate (PFLP) in the management of these fractures.

Methods: A prospective, comparative study was conducted at Orthopedic Department from 2020 to 2024. This research focused on a select group of 18 cases, all above the age of 60, with intertrochanteric fractures. These cases were classified into two groups: Group A (PFLP), and Group B (DHS). Hip Rating Score was used to assessed outcomes. Follow-up assessments were conducted at predetermined intervals after the surgery. The initial evaluation took place the day after the procedure, followed by a second assessment at 14 days to observe early recovery and identify any immediate complications. The final evaluation was performed at three months to assess long-term outcomes.

Results: The preoperative analysis for both arms shown no significant differences in age, symptoms, hospital stay, anticoagulant drugs, and energy trauma. A significant difference in the duration of operation, with Group A longer duration than Group B (P=0.02). Group B reported a quick recovery as a statistically significant faster time to starting weight bearing (P=0.01). HRS between Group A and Group B, showed no significant overall in mean scores. For Group A, most fractures in good HRS more than Group B. Group B more excellent than A, with a significant difference in fracture stability and fixation technique (p=0.01). Both groups showed the same rate of varus deformity. Cases of Group A experienced pain doubled than Group B.

Conclusions: Both proximal femoral locking plate (PFLP) and dynamic hip screw (DHS) fixation methods yielded comparably favorable outcomes in the treatment of stable intertrochanteric fractures. However, DHS demonstrated certain advantages, including reduced operative time and a lower incidence of postoperative complications such as infections and hip discomfort which superior to PFLP.

Keywords: Intertrochanteric fractures, proximal femoral locking plate (pflp), dynamic hip screw (dhs), geriatric orthopedic surgery, functional outcomes

Introduction

Intertrochanteric fractures, which are extracapsular breaks of the proximal femur located between the greater and lesser trochanters, are most commonly seen in the elderly population ^[1]. These injuries significantly contribute to both morbidity and mortality among older adults, making them a major public health issue ^[2, 3]. Annually, millions of individuals suffer from trochanteric fractures, placing a considerable strain on healthcare systems globally ^[4, 5].

The leading risk factor for intertrochanteric fractures is osteoporosis, a condition that greatly increases bone fragility. By 2025, it is projected that osteoporosis-related fractures will reach around 3 million annually in the United States, incurring healthcare costs estimated at \$25.3 billion ^[6]. Most intertrochanteric fractures occur in individuals over 65 years of age, who frequently present with multiple comorbidities, further amplifying the financial burden on healthcare systems ^[7].

These fractures are associated with high morbidity and an alarming 27% mortality rate within the first year following surgery ^[8, 9]. As the elderly population continues to grow, the incidence of intertrochanteric fractures is expected to rise sharply, highlighting the pressing need for effective treatment strategies to reduce both the clinical and economic impact ^[10, 11].

This study aims to compare the clinical and functional outcomes of two surgical fixation methods—Proximal Femoral Locking Plate (PFLP) and Dynamic Hip Screw (DHS)—in the treatment of intertrochanteric fractures in elderly patients, with a particular focus on differences in performance between stable fracture patterns and to determine which method offers superior postoperative results, shorter operative time, and fewer complications, especially in cases of unstable fractures.

Methods Study Design

A prospective, comparative study was conducted at Orthopedic Department from 2020 to 2024. This research focused on a select group of 18 cases, all above the age of 60, with intertrochanteric fractures. These cases were classified into two groups: Group A (PFLP), and Group B (DHS).

Inclusion Criteria

• Intertrochanteric fractures stable types.

Exclusion Criteria

- Open fractures.
- Unstable fractures.
- Loss of follow-up

Ethical approval

The Medical Ethical Committee of The Department of Orthopedic, Abu-Graib General Hospital approved this study.

Assessment

1. Preoperative

- Mechanism of Trauma (low or high energy).
- Symptoms: pain, bear weight disability, swelling and bruises.
- Hospital stay: >48 hours.
- Anticoagulant treatment.
- Knee joint trauma.

2. Intraoperative

• I.V. Antibiotic

- Anesthesia (general or spinal anesthesia)
- Assess complications.
- Blood transfusion.

3. Postoperative

- Weight bearing time
- Anticoagulant treatment

4. Complications

Which are varus deformity, wound infection, pain, implant cutout and infected non-union.

5. Hip Rating Score

It served as the main instrument for assessing patient outcomes, covering a range of factors including pain levels, functional ability, mobility, and the capacity to resume daily activities. The scoring system is divided into categories that indicate symptom severity and recovery progress: poor (below 16), fair (16-24), good (24-31), and excellent (above 31).

Follow-Up

Follow-up assessments were conducted at predetermined intervals after the surgery. The initial evaluation took place the day after the procedure, followed by a second assessment at 14 days to observe early recovery and identify any immediate complications. The final evaluation was performed at three months to assess long-term outcomes, such as implant stability, functional mobility, and the presence of any lateonset complications.

Statistical analysis

Statistical analysis was conducted using SPSS version 24. The chi-square test was employed to compare the outcomes between the two groups, with a P<0.05 regarded as statistically significant.

Results

The preoperative analysis for both arms shown no significant differences in age, symptoms, hospital stay, anticoagulant drugs, and energy trauma, Table (1).

Table 1: Analysis of preoperative assessment.

Variables		Group A (PFLP)	Group B (DHS)	D volue
Variables		No. (%)		P-value
Age	Mean ±SD	65.2±5.8	66.1±7.9	0.3
Mechanism of injury (energy)	Low	9 (100)	9 (100)	NA
	High	-	-	
Symptoms	Pain	9 (100)	9 (100)	NA
	WBD	9 (100)	9 (100)	NA
	Swelling	5 (55.6)	7 (77.8)	0.7
	Bruises	5 (55.6)	4 (44.4)	0.4
Hospital stay (hours)	<48	4 (44.4)	6 (66.7)	0.2
	>48	5 (55.6)	3 (33.3)	
Anticoagulant drugs		5 (55.6)	5 (55.6)	1

Table (2) showed intra to postoperative assessment between both arms. A significant difference in the duration of operation, with Group A longer duration than Group B

(P=0.02). Group B reported a quick recovery as a statistically significant faster time to starting weight bearing (P=0.01).

Table 2: Intra to postoperative assessment.

Variables	Group A (PFLP)	Group B (DHS)	Dl	
Variables	No. (P-value		
Duration (hours)	1 and ½	1	0.02	
Weight bearing time (months)	7	6	0.01	
Anticoagulant drugs	9 (100)	9 (100)	NA	

Table (3) showed HRS between Group A and Group B, with no significant overall difference in mean scores.

Table 3: HRS at 3 months postoperative follow-up.

HRS	Group A (PFLP)	Group B (DHS)	P-value
IIKS	mean	r-value	
Mean	25.5+6.3	26.8+4.9	0.1
Stable fractures	29.1+1.8	29.3+3.6	0.1

Table (4) HRS by fracture type and fixation method in two groups. For Group A, most fractures in good more than Group B. Group B more excellent than A, a significant difference in fracture stability and fixation technique that affect recovery (p=0.01).

Table 4: HRS of each modality of fixation

C	Poor (<16)	Fair (16-23)	Good (24-31)	Excellent (>31)
Group	No. (%)			
A	1 (5.6)	1 (5.6)	6 (33.3)	1 (5.6)
В	-	2 (11.1)	4 (22.2)	3 (16.7)
P-value			0.01	

Table (5) listed the complications postoperative. Both groups showed the same rate of varus deformity. Cases of Group A experienced pain doubled than Group B.

Table 5: Complications postoperative.

Complications	Group A (PFLP)	Group B (DHS)	D volue
Complications	No. (%)		r-value
Varus deformities	1 (11.1)	1 (11.1)	
Infection	-	-	
Pain	4 (44.4)	2 (22.2)	0.4
Implant cutout	1	1 (11.1)	
Infected non-union	1 (11.1)	-	

Discussion

The management of intertrochanteric fractures in the elderly remains a central focus in orthopedic research, given the need for this population to return quickly to pre-injury levels of daily function. Prompt and effective treatment is essential not only to minimize systemic, local, and psychological complications associated with such injuries but also to avoid the negative consequences of prolonged immobility. These risks can be significantly reduced through the use of rigid internal fixation methods combined with early mobilization.

The demographic characteristics of patients in both groups were largely comparable, ensuring that outcomes were not influenced by age-related variations in recovery. All patients sustained their injuries through low-energy falls—a frequent occurrence in the elderly due to factors such as vertigo, reduced visual acuity, or minor accidents—with no associated life-threatening injuries or neurovascular damage. These findings are consistent with those of Agrawal *et al.*, although our study exclusively targeted a geriatric population, highlighting the age-specific implications of such fractures

Group A experienced longer surgical durations, indicating greater intraoperative complexity compared to Group B. This supports the preference for DHS in situations where minimizing operative time and blood loss is a priority, a conclusion also drawn by Agrawal *et al.* ^[12]. The time to weight-bearing differed between groups, with stable fractures allowing earlier mobilization. This underscores the significance of both fracture stability and fixation rigidity in planning rehabilitation. Our findings align with the growing

consensus favoring early mobilization, as reported by Grabmann *et al.* ^[13].

Functional outcomes, as assessed by the Harris Hip Score (HRS) during follow-up, revealed no significant differences between fixation methods for stable fractures. These results are consistent with those of Agrawal *et al.* [12] and Raj *et al.* [14], with the latter even reporting superior outcomes for PFLP compared to DHS.

Postoperative local complications occurred at comparable rates across both groups, echoing trends seen in previous studies [12].

The prognosis for intertrochanteric fractures in elderly patients—whether treated with a proximal femoral locking plate (PFLP) or a dynamic hip screw (DHS)—depends on a multifactorial interplay. Key determinants include the type of fixation used, fracture stability (stable vs. unstable), existing comorbidities, pre-fracture activity level, knee joint status, surgical precision, fixation rigidity, and the timing of both postoperative mobilization and weight-bearing initiation.

Conclusions

Both proximal femoral locking plate (PFLP) and dynamic hip screw (DHS) fixation methods yielded comparably favorable outcomes in the treatment of stable intertrochanteric fractures over a three-month follow-up period. However, DHS demonstrated certain advantages, including reduced operative time and a lower incidence of postoperative complications such as infections and hip discomfort.

Conflict of Interest

Not available

Financial Support

Not available

References

- Attum B, Pilson H. Intertrochanteric Femur Fracture. [Updated 2023 Aug 8]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025. https://www.ncbi.nlm.nih.gov/books/NBK493161/
- Moradi A, Moradi M, Emadzadeh M, Bagheri F. Comparison of the Dynamic Hip Screw with the Dynamic Hip External Fixator for Intertrochanteric Fractures: Report of a Randomized Controlled Trial. Arch Bone Jt Surg. 2021;9(6):665-676. DOI:10.22038/ABJS.2021.53705.2672. PMID: 35106332; PMCID: PMC8765197.
- 3. Bedrettin A, Sahin F, Yucel MO. Treatment of intertrochanteric femur fracture with closed external fixation in high-risk geriatric patients: can it be the most reliable method that reduces mortality to minimum compared to proximal femoral nail and hemiarthroplasty? Medicine (Baltimore). 2022;101(1):e28369.
 - DOI:10.1097/MD.0000000000028369. PMID: 35029883; PMCID: PMC8735793.
- 4. Papadimitriou N, Tsilidis KK, Orfanos P, Benetou V, Ntzani EE, Soerjomataram I, *et al.* Burden of hip fracture using disability-adjusted life-years: a pooled analysis of prospective cohorts in the CHANCES consortium. Lancet Public Health. 2017;2(5):e239-e246.
 - DOI: 10.1016/S2468-2667(17)30046-4. Epub 2017 Apr 11. PMID: 29253489.
- Çolak İ, Mete E, Kristensen MT, Kuru Çolak T. Translation, reliability, agreement and validity of the Turkish version of Cumulated Ambulation Score in

- patients with hip fracture. Jt Dis Relat Surg. 2020;31(2):346-352.
- DOI: 10.5606/ehc.2020.75526. Epub 2020 Jun 18. PMID: 32584736; PMCID: PMC7489148.
- https://www.niams.nih.gov/healthtopics/osteoporosis/diagnosis-treatment-and-steps-to-take
- 7. Carrington NT, Milhouse PW, Behrend CJ, Forrester SR, Pace TB, Anker JN, *et al.* A novel load-sensing sliding hip screw to aid in the assessment of intertrochanteric fracture healing. J Biomech. 2025;179:112481.

DOI: 10.1016/j.jbiomech.2024.112481. Epub 2024 Dec 12. PMID: 39675304; PMCID: PMC11710967.

- Jung B, Ngan A, Trent S, Katz A, Virk S, Essig D. A
 National Database Retrospective Review of Short-Term
 Postoperative Mortality in the Geriatric Population: A
 Comparison Between Emergency Spine Fractures and
 Hip Fractures. Cureus. 2024;16(2):e55038.
 DOI:10.7759/cureus.55038. PMID: 38420294; PMCID:
 PMC10901040.
- Pasco JA, Sanders KM, Hoekstra FM, Henry MJ, Nicholson GC, Kotowicz MA. The human cost of fracture. Osteoporos Int. 2005;16(12):2046-52. DOI:10.1007/s00198-005-1997-y. Epub 2005 Oct 14. PMID: 16228106.
- 10. Bessette L, Jean S, Lapointe-Garant MP, Belzile EL, Davison KS, Ste-Marie LG, *et al.* Direct medical costs attributable to peripheral fractures in Canadian postmenopausal women. Osteoporos Int. 2012;23(6):1757-1768. DOI: 10.1007/s00198-011-1785-9. Epub 2011 Sep 17. PMID: 21927921.
- 11. Ramlee MH, Sulong MA, Garcia-Nieto E, Penaranda DA, Felip AR, Kadir MRA. Biomechanical features of six design of the delta external fixator for treating Pilon fracture: a finite element study. Med Biol Eng Comput. 2018;56(10):1925-1938. DOI:10.1007/s11517-018-1830-3. Epub 2018 Apr 21. PMID: 29679256.
- Agrawal P, Gaba S, Das S, Singh R, Kumar A, Yadav G. Dynamic hip screw versus proximal femur locking compression plate in intertrochanteric femur fractures (AO 31A1 and 31A2): A prospective randomized study. J Nat Sci Biol Med. 2017;8(1):87-93. DOI:10.4103/0976-9668.198352. PMID: 28250681; PMCID: PMC5320830.
- Grabmann C, Hussain I, Zeller A, Kirnaz S, Sullivan V, Sommer F. Early Postoperative Weight-Bearing Ability after Total Hip Arthroplasty versus Bipolar Hemiarthroplasty in Elderly Patients with Femoral Neck Fracture. J Clin Med. 2024;13(11):3128.
 DOI: 10.3390/jcm13113128. PMID: 38892839; PMCID: PMC11172539.
- 14. Raj S, Grover S, Bola H, Pradhan A, Fazal MA, Patel A. Dynamic hip screws versus cephalocondylic intramedullary nails for unstable extracapsular hip fractures in 2021: A systematic review and meta-analysis of randomised trials. J Orthop. 2023;36:88-98.

DOI:10.1016/j.jor.2022.12.015. PMID: 36654796; PMCID: PMC9841034.

How to Cite This Article

Salman QK, Khaleel ZI, Khazaal HA. Superiority of dynamic hip screw fixation over proximal femoral locking plate in treating stable intertrochanteric fractures. International Journal of Orthopaedics Sciences. 2025;11(3):212-215.

Creative Commons (CC) License

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-Non Commercial-Share Alike 4.0 International (CC BY-NC-SA 4.0) License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.