Cozens phenomenon of proximal tibia

Dr. SV Gowtam, Dr. Amit B Garud, Dr. Rahul Sharma and Dr. Mithilesh Nikam

DOI: https://doi.org/10.22271/ortho.2021.v7.i1f.2506

Abstract

Introduction: The incidence of all proximal tibial fractures in children is 5 to 6/100,000. It has numerous complications, such as angular deformity and leg-length discrepancy. Usually proximal tibial metaphyseal fractures are known to result in late valgus deformity.

Patient Assessment: Patient assessment involves clinical and radiological examination using plain radiography of both tibias, anteroposterior and lateral view.

Management: If spontaneous correction of the deformity is not observed and there is sufficient growth remaining, hemi-epiphysiodesis can offer the optimal solution. Permanent epiphysiodesis, be it open or percutaneous, can only be used in those approaching skeletal maturity, recognizing that, if timing is incorrect, this can result in over- or under-correction and leg-length discrepancy.

Conclusion: Cozen’s phenomenon is an unpredictable, uncommon and potentially under-diagnosed complication of late valgus deformity which may occur as ‘Cozen’s phenomenon’ [48].

Theories of causes: (1) malreduction of the initial fracture (2) soft tissue interposition [3] and (3) medial tibial overgrowth secondary to fracture induced hyperaemia or due to release of the medial mechanical peristomal restraint (4) discrepancy in tibia/fibular growth with subsequent tethering of lateral tibia growth by the fibula or loss of tethering effect of the pes anserius [3, 5, 6] (5) eccentric callus formation [3, 4, 8]. Fractures of the proximal tibial metaphyseal fractures are known to result in late valgus deformity. Dr Cozen, in his article published in 1953, 3 was the first to describe a valgus deformity of the tibia that occurs after a patient sustains a proximal tibial metaphyseal fracture. We tend to refer to the complication of late valgus deformity which may occur as ‘Cozen’s phenomenon’ [48].

Patient assessment

Patient assessment involves clinical and radiological examination using plain radiography of both tibias, anteroposterior and lateral view. Angulation is measured by anteroposterior radiograph by calculating the angle between a line perpendicular to the upper epiphyseal plate and the axis of the tibial shaft below the fracture site according to Visser and...
Veldhuizen [8]. Elongation is assessed clinically at final follow-up with patients standing, using the medial malleolus tip and the superior surface of the medial condyle as landmark [40]. Nenopoulos et al. [9] classified fractures as either undisplaced fractures, metaphyseal fractures with a medial gap involving only the medial cortex, complete displaced fractures, stress fractures, or buckle fractures [50]. Radiographic measurements included the mechanical axis deviation and zone (by quadrant), leg length discrepancy, lateral distal femoral angle (LDFA), and medial proximal tibial angle (MPTA).

Management
One management strategy is to observe the patient rather than intervene, as some authors have shown that mild deformity can correct spontaneously [10-12]. However, with observation alone, distal tibial compensatory varus deformity can cause “serpentine tibia” [13]. The patella-femoral stability is hampered as the mechanical axis is lateralized away from centre of the knee leading to eccentrically loading of the lateral knee structures. Moreover, there may be long-term problems with the resulting ankle varus [14]. By consensus, proximal tibial osteotomies are contraindicated due to the high rate of complications including neurovascular injury, compartment syndrome, and a high rate of recurrence [15, 16, 47]. If spontaneous correction of the deformity is not observed and there is sufficient growth remaining, hemi-epiphysodesis can offer the optimal solution [13, 17, 18]. Permanent epiphysodesis, be it open or percutaneous, can only be used in those approaching skeletal maturity, recognizing that, if timing is incorrect, this can result in over- or under-correction and leg length discrepancy. In contradistinction, reversible physeal tethering (guided growth) can be offered at any age and repeated as needed.

Discussion
One of the most popular theories suggests that increased vascular response to the fracture causes asymmetric stimulation of the medial proximal tibial growth plate [19-26]. Another theory is that the soft-tissue interposition at the fracture site causes the valgus deformity [8, 27-30]. Some authors have attributed the deformity to loss of reduction or initial malreduction of the fracture [26, 31, 32, 38]. Other authors have argued that the tethering by the fibula or the ilioibial band causes the deformity [27, 33, 34, 38]. In addition, early weight-bearing after fracture and/or native valgus angulation has been blamed for the deformity before rigid callus formation [35, 36]. There are postulations that the development of Cozen’s phenomenon could be influenced by the child’s age at the time of the fracture. This assumption was based on the known fact that there is a physiological genu valgum in children after the age of two years, which reaches its peak at the age of four years and usually resolves by the age of seven years, as is portrayed in the Salenius curve [37]. Skak et al. [39] published a case series of 40 children aged from nine months to 12 years, with fractures of the proximal metaphysis, who were followed up between three and 14 years of the injury. He concluded that 15% of greenstick and complete fractures developed valgus deformity whereas it was not recorded either in buckle or in fissure fractures. Predisposing factors were young age and persistent valgus at the fracture site union [48]. Conservative treatment usually involves reduction and treatment with casting. Any displacement or valgus deformity must be corrected, usually by closed manipulation under anaesthetic. An above knee cast should be applied in full extension and with varus moulding to close the medial fracture gap. Treatment of non-displaced fractures is a long leg cast in near full extension with varus. The cast duration should be 6–8 weeks with serial radiographs to assess fracture position and healing. The child should return to normal activities as soon as normal movement at the knee and ankle is achieved with no residual tenderness at the fracture site [5, 51]. The authors recommended that the only indication for operative treatment was a persisting medial gap after closed manipulation. Tuten et al. [40] re-evaluated seven patients aged 11 months to 6.3 years with proximal tibial metaphyseal fractures, who had developed a valgus deformity within 12 months after healing of the fracture. They were followed up for an average of 15 years and three months. In all patients, the affected tibia was longer than the uninjured tibia. The authors concluded there was spontaneous improvement of the deformity. Zions and MacEwan [41] reviewed the cases of seven children aged 11 months to six years and four months with post-traumatic tibia valga. The children were followed up for an average of 39 months. All patients exhibited overgrowth of the injured tibia. However, not all authors suggest a wait and see approach. Müller et al. [42] published a case series of seven children aged from two years and ten months to ten years and two months who were followed up for an average of 34 months. They observed valgus deformity occurring in all cases and partial remodelling seen only in children up to the age of five years. Therefore, they recommended surgical correction and osteosynthesis as a preferred method of treatment. In fact, in a most recent paper, Morin et al. [43] treated 19 patients with proximal tibial fractures who developed valgus deformity by guided growth at 18 months post-fracture [48]. Burton and Hennerius [44] later reported a 50% rate of 5 degrees valgus deformity at an average of 8.8 months. Moreover, in the age group in which Cozen’s phenomenon is purported to occur, there are physiological changes to tibial morphology occurring that tend towards development of valgus alignment. These changes resolve over time as part of normal growth [50]. Some practitioners still treat Cozen’s phenomena expectantly [12, 45]. However, Zions et al. [12] reported that the mechanical axis remains at least 15 mm lateral to the knee centre in his series. It is unclear regarding the long-term consequences related to this, but they are likely undesirable. Mechanical axis lateralization can lead to abnormal circumduction gait, sometimes with consequent out-toeing, while altering joint reactive forces and provoking degenerative changes [46]. Although these effects take years to evolve, they may be averted by early intervention, taking advantage of the open physis to restore the mechanical axis and mitigate against limb length discrepancy. It is advisable waiting at least a year post-fracture before offering intervention. Guided growth is not time sensitive, so the decision to intervene may be further postponed unless or until symptoms evolve [49].

Conclusion
Cozen’s phenomenon is an unpredictable, uncommon and potentially under diagnosed condition. It is imperative that parents are warned of lateonset valgus deformity at an early stage to help prevent distress at a later stage and instructed to seek advice from the paediatric orthopaedic team if the deformity occurs [51]. Cozen’s phenomena of the tibia are manifested by medial tibial overgrowth following several causes including: fracture (most common), biopsy, bone graft harvest, traction pin insertion, and infection. By consensus, corrective osteotomy
is contraindicated, due to rapid recurrence of the deformity. It is now possible to safely correct the valgus deformity with minimal surgical. Guided growth, tethering the proximal medial tibial physis with an extra-periosteal, non-locking plate, and two screws are recommended. Patients need to be followed until they reach skeletal maturity, with repeat intervention, if necessary [49].

**Fig 1:** Anteroposterior and lateral radiographs of the proximal tibial metaphyseal fracture with an intact fibula in a 3-year-old child.

**Fig 2:** Anteroposterior and lateral radiograph in the initial long-leg cast demonstrate an acceptable alignment. (Photos taken from Rockwood and Wilkins’s Fractures in Children page 1140)

**Reference**

28. Weber BG. Fibrous interposition causing valgus


