Safety of neurovascular structures in ankle arthroscopy: cadaveric study

Ashish Gohiya, Arvind Karoria, Sourabh Alawa and Anshul Khare

DOI: https://doi.org/10.22271/ortho.2020.v6.i3j.2261

Abstract

Introduction: Anterior and posterior portals used for ankle arthroscopy but anterior portals are safer, provide good access and visualisation of joint.

Aims: The anatomical structures nearby portals are vulnerable to injury during surgery. To study the anatomy of ankle joint using dissection method.

Methods and material: 20 cadaveric limbs were dissected and the distance of different portals to the nearby neurovascular structures was measured.

Results: The mean distance from anteromedial portal to the great saphenous vein and saphenous nerve was 5.28 mm, 9.12mm and that between the medial midline portal to the dorsalis pedis artery and deep peroneal nerve was 10.08 mm and 16.20mm. The mean distance from anterolateral portal to the dorsalis pedis artery was 2.38mm, to superficial peroneal nerve was 7.09 mm and deep peroneal nerve was 4.12mm. The mean distance from anterolateral portal to lateral branch of superficial peroneal nerve was 3.18mm. There was injury in one specimen.

Conclusions: This present study concluded that medial midline portal is comparatively safe for ankle arthroscopy. Anterocentral portal has potential risk of injury to dorsalis pedis artery.

Keywords: Ankle arthroscopy, ankle anatomy, complications of ankle arthroscopy

Introduction

The first arthroscopic inspection of ankle joint was done by Burman in 1931 [1]. Ankle joint related symptoms and complaints are very common these days and so arthroscopy of ankle joint has increased popularity in present time because it may be use to diagnose as well as treat ankle pathologies.

The anatomical structures at ankle joint shows wide variations in terms of course and distance hence they become more prone for injury during ankle arthroscopy through any of anterior arthroscopic portals [2, 3]. Reported complication rates for this procedure have ranged from 0% to 25% [4, 5, 6, 7, 8, 9]. Neurologic injuries, which ranged from 0.04% to 4.8% is commonest [10]. The surgeon must familiar to the neurovascular structures to avoid complications [6]. Arthroscopy of the ankle can be systematic and reproducible when the surgeon is familiar to the anatomy of ankle and accurate placement of the arthroscopic portals. [11, 12, 13, 14, 15]

Material and methods

20 ankles were obtained from 12 cadavers and evaluated for study, those with damaged anatomy were discarded. Then limbs were dissected to study the neurovascular injury during ankle arthroscopy.

The bony and muscular landmarks such as both malleoli, extensor hallucis longus and tibialis anterior muscle were identified and marked.

A. Anterocentral Portal
B. Anterolateral Portal
C. Anteromedial Portal
D. Medial midline Portal
The muscle tendons were palpated first to determine the site of entry and the joint was distended with 20 ml saline by using syringe. Then portal was established at each site by giving a stab incision followed by blunt dissection with scissors down to the joint. A 4 mm arthroscope was inserted and portal established. Portal sites were marked with a marker (wooden stick).

The dissection of skin and subcutaneous fat was done and underlying fascia was separated for visualization of the neurovascular structures below. During the dissection, anatomy and the location of neurovascular structures (muscles, tendons and nerves) was preserved. Followed by dissection the neurovascular structures were identified and distance was measured from each portal. In a condition where there were two branches of one structure the distance from the portal to the nearest branch was recorded.

The mean distance from anteromedial portal to the saphenous nerve and saphenous vein was 9.12mm (2.0-14.0mm) and 5.28mm (1.6-11.3mm).

<table>
<thead>
<tr>
<th>Neurovascular Structure</th>
<th>Mean Distance (mm)</th>
<th>Tethering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anteromedial Portal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long Saphenous Vein</td>
<td>5.28 (1.6-11.3)</td>
<td>0</td>
</tr>
<tr>
<td>Saphenous Nerve</td>
<td>9.12 (2.0-14.0)</td>
<td>0</td>
</tr>
<tr>
<td>Medial Midline Portal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dorsalis Pedis Artery</td>
<td>10.08 (4.0-14.4)</td>
<td>0</td>
</tr>
<tr>
<td>Superficial Peroneal Nerve</td>
<td>16.20 (7.0-24.3)</td>
<td>0</td>
</tr>
<tr>
<td>Anterocentral Portal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dorsalis Pedis Artery</td>
<td>2.38 (1.0-7.1)</td>
<td>0</td>
</tr>
<tr>
<td>Superficial Peroneal Nerve</td>
<td>7.09 (1.1-13.5)</td>
<td>0</td>
</tr>
<tr>
<td>Deep Peroneal Nerve</td>
<td>4.12 (1.9-8.3)</td>
<td>0</td>
</tr>
<tr>
<td>Anterolateral Portal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lateral Branch of Superficial Peroneal Nerve</td>
<td>3.18 (0-6.3)</td>
<td>1</td>
</tr>
</tbody>
</table>

The mean distance from medial midline portal to dorsalis pedis artery was 10.08mm (4.0-14.4mm) and superficial peroneal nerve was 16.20mm (7.0-24.3mm).

Discussion

Ankle arthroscopy has become an important resource for the diagnosis and treatment of pathologies of this joint, but as with any procedure, it is subject to complications. Ferkel described 9% complication rates in his study. 4 Out of these, 49% were neurological complications. This study was aimed at studying the anatomy of the ankle region with respect to the anterior ankle arthroscopic portals.

Anteromedial portal

In this study the mean distance between from the anteromedial portal to the great saphenous vein and saphenous nerve was 5.28mm (1.6-11.3) and 9.12mm (2.0-14.0). Buckingham et al. \(^{13}\) reported mean distance 5.7 mm from long saphenous vein and there was one laceration, saphenous nerve was at mean distance of 5.9 mm there was one case damage to the nerve.

Golano et al. \(^{14}\) reported the mean safe distance between the portal and the great saphenous vein was 9mm (range 3-16mm) and for saphenous nerve was 7.4mm (range 0-17mm). Though these structures are relatively risk free, they reported 5 cases neurological complications during arthroscopy using the anteromedial portal. Woo et al. \(^{16}\) conducted a study in Chinese cadavers and found the mean distance was 10.2mm (range 1.1 to 20.2).
Bharambe et al. [17] reported mean distance from portal to
great saphenous vein and saphenous nerve was 7.7 mm, range
being 6.5 to 9.5 mm.

Medial midline portal
In this study the dorsalis pedis artery was at mean distance of
10.08 mm (range 4.0-14.4 mm) and superficial nerve was at
16.20 (range 7.0-24.3mm) from medial midline portal.
Buckingham et al. [13] found mean distance of 11 mm (range
5-15mm) from the dorsalis pedis artery.
Bharambe et al. [17] found mean distance for DPA and deep
peroneal nerve was 1.7 (range being 1 to 2mm).

Anterocentral portal
The mean distance from anterocentral portal to dorsalis pedis
nerve was 2.38mm (range 1.0-7.1mm), to superficial peroneal
nerve was 7.09mm (range 1.1-13.5mm) and deep peroneal
erve was 4.12mm (range 1.9-8.3mm) in present study.
Buckingham et al. [13] reported the mean distance to be 0.7
(range 0-5) for dorsalis pedis artery and 1.1 (range 0-5) for
deep peroneal nerve. Dorsalis pedis artery was injured in one
case, three cases superficial peroneal nerve lacerated and in
one case deep peroneal nerve was tethered.

Golanó et al. [14] discouraged the use of this portal due to high
associated risk of injury to superficial peroneal nerve
superficially and deep peroneal nerve and dorsalis pedis artery
on the deeper plane. They also stated that any associated
variations of the artery may also lead to vascular lesions.

Feiwell and Frey [15] found the average distance from
anterocentral portal to the neurovascular bundle to be 3.3mm
(range, 0-10mm). There was 4 cases was related to the
neurovascular bundle injury. Bharambe et al. [17] found the
average distance from portal to DPA and deep peroneal nerve
was 1.4mm.

Anterolateral portal
In the present study the mean distance between the
anterolateral portal and superficial peroneal nerve was found
to be 3.18 mm (range 00-6.3mm) and in one case nerve was
tethered. Stetsen and Ferkel [12] reported a mean distance of
the portal from the superficial peroneal nerve branch to be 6.2
mm (range, 0-24mm). Buckingham et al. [13] reported a mean
distance of 0.5 mm (range, 0-10 mm) and 2 cases of
laceration to the nerve.

Woo et al. [16] found the mean distance from the portal to
superficial peroneal nerve was 5.5mm (range, 0.4 to 14.4).
They also stated that the anterolateral portal should be placed
as close to the fibula as possible to avoid injury to the nerves.
Bharambe et al. [17] found the mean distance from superficial
peroneal nerve to portal being 2.5mm. Martin oliva x et al. [18]
found mean distance of 4.8mm from anterolateral portal.

Conclusion
The study concluded that, medial midline portal is safest
ankle portal for ankle arthroscopy since neurovascular
structures are far away from the portal. While anteromedial
portal has risk of injury to saphenous nerve and vein.
Anterocentral has potential risk of dorsalis pedis artery injury.
Anterolateral portal has a risk of SPN injury due to variability
in course.

Ankle arthroscopy can be reproducible if surgeon has a
knowledge of anatomy and neurovascular structures adjacent
to portal.

References
 13:669-95.
2. Parikh S, Dawe E, Lee C, Whitehead-Clarke T, Smith C,
 Bendall S. A cadaveric study showing the anatomical
 variations in the branches of the dorsalis pedis artery at
 the level of the ankle joint and its clinical implication in
3. Jeon Anna, Seo Chang Minn, Lee Je-Hun, Seung-Ho
 Han. The distribution pattern of the neurovascular
 structures for anterior ankle arthroscopy to minimize
 structural injury; anatomical study, BioMed Res Int.
 2018; ArticleID:3421985.
4. Ferkel RD, Heath DD, Guhl JF. Neurological
 complications of ankle arthroscopy. Arthroscopy. 1996;
5. Ferkel RD, Small HN, Gittins JE. Complications in foot
 (391):89-104.
6. Tatiana Ferreira dos Santos, Mauro Cesar Matos e
 Dinato. Vascular complication after anterior ankle
 arthroscopy: case report. Sci J Foot Ankle. 2019;
 13(1):87-90.
7. Peter A. de Leeuw J, Pau Golanó, Leendert Blankervoort,
 Inger N. Sierevelt, C. Nick van Dijk.
8. Identification of the superficial peroneal nerve: Anatomical
 study with surgical implications. Kne Surg
9. Barber FA, Click J, Britt BT. Complications of ankle
10. Lamy C, Steinstra JI. Complications in ankle
11. Kaisar Yamine, Assi Chahine. Neurovascular and
 tendon injuries due to ankle arthroscopy portals: a meta-
 analysis of interventional cadaveric studies. Surgical &
12. Rachel M Frank, Andrew R Hsu, Christopher E Gross,
 David M Walton, Simon Lee. Open and Arthroscopic
 Surgical Anatomy of the Ankle. Anatomy research
 international, 2013, ArticleId:182-650.
13. Stetsen WB, Ferkel RD. Ankle arthroscopy I:Technique
 4:17-23.
 Study of a New Portal for Ankle Arthroscopy. J Bone
15. Golanó Pau, Vega J, Carro LP, Gotzens V. Ankle
 Anatomy for the Arthroscopist Part 1: The Portals. Foot
16. Feiwell LA, Frey C. Anatomic study of arthroscopic
 portal sites of the ankle. Foot Ankle. 1993; 14:142-7.
17. Woo Siu-Bon, Wong Tak-Man, Chan WL, Yen CH,
 Wong WC, Mak KL. Anatomic variations of
 neurovascular structures of the ankle in relation to
 arthroscopic portals: a cadaveric study of Chinese
18. Bharambe Vaishaly K, Shinde Amol A, Patel Dinesh K,
 Chaudhary Sunedha. Anatomical study of the ankle joint
 in relation to the anterior, the posterior and the (new)
 9(8).
19. Martin Oliva X, Méndez López JM, Monzo Planella M,
 Bravo A, Rodrigues-Pinto. Anatomical relations of
 anterior and posterior ankle arthroscopy portals:
 25:577-581.